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Abstract
In this paper we give a method for constructing systematically all simple 2-
connected graphs with n vertices from the set of simple 2-connected graphs with
n − 1 vertices, by means of two operations: subdivision of an edge and addition
of a vertex. The motivation of our study comes from the theory of non-ideal
gases and, more specifically, from the virial equation of state. It is a known
result of statistical mechanics that the coefficients in the virial equation of state
are sums over labeled 2-connected graphs. These graphs correspond to clusters
of particles. Thus, theoretically, the virial coefficients of any order can be
calculated by means of 2-connected graphs used in the virial coefficient of the
previous order. Our main result gives a method for constructing inductively all
simple 2-connected graphs, by induction on the number of vertices. Moreover,
the two operations we are using maintain the correspondence between graphs
and clusters of particles.

PACS numbers: 02.10.Ox, 05.70.Ce
Mathematics Subject Classification: 05C30, 05C40, 82C20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The calculation of the thermodynamic properties of non-ideal gases and liquids is usually
based on the equation of state, which is typically a function of the pressure p, temperature

5 Author to whom any correspondence should be addressed.

1751-8113/10/315004+20$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/31/315004
mailto:sofia@math.ntua.gr
http://stacks.iop.org/JPhysA/43/315004


J. Phys. A: Math. Theor. 43 (2010) 315004 E Androulaki et al

T and density ρ (or volume V ) of the system. The general form of an equation of state is
f (p, T , V ) = 0. The most widely used form of an equation of state, used for the calculation
of the thermodynamic properties of non-ideal fluids in low or medium pressures, is the virial
equation of state, which has the general form

p

kT
= ρ + B2(T )ρ2 + B3(T )ρ3 + · · · ,

where B2(T ), B3(T ), etc are the second, third, etc virial coefficients, respectively. The virial
coefficients are functions of the temperature for a pure component (and of the composition in
the case of mixtures) and can be calculated, in principle, using methods of statistical mechanics
[1]. As it turns out, the virial coefficient Bn is an integral of a weighted sum of all 2-connected
graphs of n vertices, where particles correspond to vertices and interactions between particles
correspond to edges.

A k-connected graph is a graph with the property that for any pair of vertices there are
at least k disjoint paths connecting them. In order to find all k-connected graphs of n vertices
one has to extract them from the set of all connected graphs of n vertices. As the number
of connected and k-connected graphs increases exponentially with n, it can be very tedious
to isolate the k-connected graphs. In the literature there are several results by which we can
obtain all k-connected graphs by simpler k-connected graphs. All these results are basically
resting on the operations: addition of an edge and amalgamation of vertices.

k-connected graphs are used in various areas apart from graph theory and the calculation
of virial coefficients in statistical mechanics. For example in networks, where a graph is seen
as a representation of a network [2] or in chemistry, where rigid symmetries of 3-connected
graphs and, in general, of k-connected graphs play an important role [3].

Motivated by the use of graphs in the calculation of the virial coefficients, we prove in
this paper the following result.

Theorem 1. In a simple 2-connected graph of n vertices there is at least one vertex that can
be subtracted or removed so that the result will be a simple 2-connected graph with n − 1
vertices. Equivalently, every simple 2-connected graph with n vertices arises from a simple
2-connected graph with n − 1 vertices by adding a vertex or by subdividing an edge.

Although the above seems natural we were not able to find anything similar in the
literature. Firstly, our two operations, addition of a vertex and subdivision of an edge, are only
related to vertices. Secondly, our method of building 2-connected graphs is inductive with
induction on the number of vertices and with the induction step equal to 1. In contrast, all
inductive results in the literature that characterize k-connectedness (in general) are basically
resting on the operation addition of an edge and the induction step is not necessarily equal to
1 (see section 4). Theorem 1 guarantees that, using the two operations, addition of a vertex
and subdivision of an edge, we obtain the full list of simple 2-connected graphs with n vertices
from those with (n − 1) vertices. But, we note that in this list there will be repetitions, that is,
pairs of isomorphic graphs (see remark 3).

The two operations in theorem 1 correspond naturally to situations in non-ideal fluids.
Indeed, looking at a 2-connected graph as a cluster of particles [1, 4], adding a vertex means
that a particle comes sufficiently close to a cluster of particles and starts to interact with at
least two of them, while subdividing an edge means that a particle comes close to a cluster in
such a way that it pushes away two particles of the cluster, so that they stop interacting with
each other, and a new particle begins to interact with these two particles (only). Moreover,
we consider only simple graphs, as it has no physical sense to say that two particles interact
twice; therefore, we cannot allow more than at most one edge per pair of vertices. Finally, the
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two operations are particularly adapted to computing the virial coefficients sequentially, since
induction on the number of vertices allows stopping the calculation of the virial coefficients
on the desired order, the number of vertices, which depends on the properties of the given
system.

Our results should be of interest to graph theorists, physical chemists, chemical engineers
and electrical engineers. For example, they can be applied to the theory of networks in
which, for safety reasons, at least two disjoint paths are required between two nodes (see [2],
section 3.3). One related work is [5] where a new algorithm is given for growing a planar
cellular graph by proper attachment of polygons of length chosen from a given distribution.
The resulting category of planar graphs are 2-connected (if ‘open’) or 3-connected (if ‘closed’),
resembling soap froths or nano-particles self-assembled through nonlinear dynamic processes.
In the language of our operations, one could start with a triangle and do subdivision of edges,
then add a vertex of degree 2, followed by possible subdivision of the new edges, and so
on. A more applied example is the formation of clusters of particles met in many physical,
chemical or biological situations. In particular, the formation of colloids with valency or
patchy colloids, which can be used as building blocks of specifically designed self-assembled
structures and new colloidal molecules, is an extremely new and fast-growing topic. See [6].

The paper is organized as follows. In section 2 we explain the theory of virial coefficients
and how these are related to 2-connected graphs. In section 3 we recall some definitions
from graph theory and in section 4 we give known theoretical results on k-connected graphs.
In section 5 we describe the operations on 2-connected graphs that we use and we prove
that applying these operations yields 2-connected graphs. Finally, we prove our main result
(theorem 1). We extracted our proofs from the known theorems in graph theory, which,
nevertheless, are very complicated; they are much more general and require an extensive
knowledge of graph theory. For the extent needed in this paper we give simple and
straightforward proofs. Moreover, in the appendix we give an alternative proof for theorem 1
(theorem 2) after extending its statement slightly.

2. Calculation of the virial coefficients in the classical limit

The starting point for the calculation of virial coefficients is the grand-canonical partition
function �. The function � can be related to the canonical partition function, Q, through the
equation

�(V, T , μ) =
∞∑

N=0

Q(N,V, T )λN, (1)

where N is the number of molecules, μ is the chemical potential, �(V, T , μ) is the grand-
canonical partition function, Q(N,V, T ) is the canonical partition function and λ = exp(βμ)

is the activity. For N = 0, the system has only one state with E = 0, so Q(N = 0, V , T ) = 1.
This allows us to write equation (1) in the following form:

�(V, T , μ) = 1 +
∞∑

N=1

QN(V, T )λN, (2)

where QN(V, T ) is equivalent to Q(N,V, T ). Using this form of �(V, T , μ) we can find a
suitable form of the characteristic thermodynamic equation in the grand-canonical ensemble
which can be compared with the virial equation of state, in order to get an expression for the
virial coefficients, see [1], pp 224–6:

pV = kT ln �. (3)
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Table 1. The contribution of the first terms in the expansion of p/ρkT for argon at 25 ◦C.

p (atm) p/ρkT

1 + B2ρ + B3ρ
2 + residual

1 1 − 0.000 64 + 0.000 00 + · · · (+0.000 00)

10 1 − 0.006 48 + 0.000 20 + · · · (−0.000 07)

100 1 − 0.067 54 + 0.021 27 + · · · (−0.000 36)

1000 1 − 0.384 04 + 0.687 88 + · · · (+0.372 32)

Source: Reference [1].

The procedure described above gives the pressure p as a power series of the density ρ:
p

kT
= ρ + B2(T )ρ2 + B3(T )ρ3 + · · · , (4)

where

B2(T ) = −b2 = −(2!V )−1
(
Z2 − Z2

1

)
(5a)

B3(T ) = 4b2
2 − 2b3 = − 1

3V 2

[
V

(
Z3 − 3Z2Z1 + 2Z3

1

) − 3
(
Z2 − Z2

1

)2] · · · . (5b)

Here, Bi(T ), i = 2, 3, . . . , are the virial coefficients and Zi are the configurational integrals
discussed below.

Equations (5a) and (5b) become significantly more complicated for higher order virial
coefficient. Nevertheless, the first few virial coefficients are sufficient for the calculation of
the equation of state for pressures up to a few hundred atmospheres, as shown in table 1.

This work focuses on the virial coefficients in the thermodynamic limit where the volume
becomes arbitrary large, so that our system approximates the properties of a macroscopic
system. In the analysis below we will refer only to monoatomic fluids. So, in the classical
limit, the canonical partition function QN is given by the formula

QN = 1

N !

(
2πmkT

h2

)3N/2

ZN. (6)

Here h is Planck’s constant and ZN is the configuration integral:

ZN =
∫

· · ·
∫

e−UN /kT dr1 dr2 · · · drN , (7)

where ri is the position of the ith molecule. We saw above in equations (5a), (5b) and (6) that
for the calculation of any BM we need the partition functions QN for N � M or, equivalently,
the configuration integral ZN for N � M . For example, for the calculation of the second and
third virial coefficient we need the configuration integrals:

Z1 =
∫

dr1 = V

Z2 =
∫ ∫

e−U2/kT dr1 dr2

(8)

and

Z3 =
∫ ∫ ∫

e−U3/kT dr1 dr2 dr3.

Moreover, as we note, for the calculation of the second virial coefficient we need the potential
function U2. For monoatomic molecules, it is logical to assume that the potential function
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U2 depends only on the distance between the two molecules, so U2 = u (r12), where
r12 = |r2 − r1|. We then have the expression of B2(T ) as a function of u (r12) and by
replacing Z1 and Z2 in equation (5a):

B2(T ) = − 1

2V

(
Z2 − Z2

1

) = − 1

2V

∫ ∫
[e−u(r12)/kT − 1] dr1 dr2. (9)

Using the same approach for the calculation of the third virial coefficient, we need the potential
function U3(r1, r2, r3). The most common approximation for U3 is

U3(r1, r2, r3) ≈ u(r12) + u(r13) + u(r23),

that is, we take the potential for three molecules to be the sum of the three pairwise potentials.
By replacing Z1, Z2 and Z3 in equation (5b) we obtain the following expression for B3(T ) as a
function of u (r12), u (r13) and u (r23):

B3(T ) = − 1

3V 2

[
V

(
Z3 − 3Z2Z1 + 2Z3

1

) − 3
(
Z2 − Z2

1

)2]

= − 1

3V

∫ ∫ ∫
[e−u(r12)/kT − 1][e−u(r13)/kT − 1][e−u(r23)/kT − 1] dr1 dr2 dr3. (10)

The terms in the square bracket in equations (9) and (10) appear very often in equations of the
theory of non-ideal gases and are known as the f-Mayer function. The f -Mayer function is
defined as

fij = f (rij ) = e−u(rij )/kT − 1,

where rij = |rj − ri |. Obviously, f (rij ) → 0 as rij → ∞, since u(rij ) → 0 as rij → ∞.
Therefore, equations (9) and (10) become

B2(T ) = − 1

2V

∫ ∫
f12 dr1 dr2

B3(T ) = − 1

3V

∫ ∫ ∫
f12f13f23 dr1 dr2 dr3.

If we look at the integral in B3(T ) more closely, we see that it includes three molecules and
since fij → 0 as the i and j molecules draw away, the product f12f13f23 disappears unless
the three molecules are close together.

One way to represent schematically the integral in the expression of B3(T ) is as follows:
we draw a numbered circle for each different index that appears in the product and a line
for each pair of molecules that are connected through an f -function. The result is a labeled
graph. For example, the integrals in the second and third virial coefficients can schematically
be represented as it is indicated in figure 1(a). Now, since each integral represents a cluster of
molecules, we call this type of diagrams, like those in figures 1(a) and (c), cluster diagrams of
molecules. The general result of the theory of non-ideal fluids reduces the calculation of virial
coefficients to finding cluster diagrams. This very important result gives each virial coefficient
through the formulas below:

Bj+1 = −j

j + 1
βj , (11a)

where

βj = 1

j !V

∫
· · ·

∫
S ′

1,2,...,j+1 dr1 dr2 · · · drj+1 (11b)

and where S ′
1,2,...,j+1 is the sum of all products of f -functions that connect the 1, 2, . . . , j+1

molecules, in such a way that the removal of any vertex and the incident edges will not give
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(a)

(c)

(b)

Figure 1. Examples of cluster diagrams. (a) The integrals in the second and third virial coefficient.
(b) The three topologically equivalent connected diagrams of three molecules. (c) The three
different types of 2-connected graphs for four molecules.

a disconnected graph. Such graphs are called 2-connected graphs. All graphs illustrated in
figure 1(a) and (c) are 2-connected graphs, while those in figure 1(b) do not have this property.
For example, we have S ′

1,2 and S ′
1,2,3 as illustrated in figure 1(a), respectively, while S ′

1,2,3,4 is
the sum of all labeled graphs illustrated in figure 1(c). Moreover, if we forget the labelings we
may write

S ′
1,2 = −

S ′
1,2,3 = �

S ′
1,2,3,4 = 3 + 6 +

(12)

where the coefficients represent the number of different labelings of the graph. A detailed
discussion of the above ideas is given, for example, in [1].

Remark 1. The number of different labelings of an unlabeled graph G on n vertices is equal to
n! and inversely proportional to the order of its automorphism group, Aut(G), which detects
the symmetries of G, see, for example, [7], chapter 9, [8], chapter 2 or [9], chapter 9. Finding
Aut(G) is not always easy and it is a widely researched area of graph theory. Then, according
to the type of the potential between the particles, one needs to calculate the value of the integral
of S over all the possible positions of the particles. But this is just an operational issue and
there are routine algorithms that can do this.

To sum up, we have seen that in order to compute virial coefficients we need to know the
different types of 2-connected graphs and for each type the number of different labelings. We
will explain all these notions in more detail below.

3. Definitions from graph theory

A graph G is defined by the set V (G) of its vertices, the set E(G) of its edges and a relation of
incidence fG, which associates each edge with one or two vertices called its ends. Equivalently,

6
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we can say that it associates each vertex with its adjacent vertices. The degree of a vertex is
the number of incident edges. A graph G is called simple if between two vertices there is at
most one edge, and loops are excluded. Throughout this work we will consider only simple
graphs. A graph H is said to be a subgraph of a graph G if

V (H) ⊆ V (G), E(H) ⊆ E(G).

In order to find all different 2-connected graphs it is of high importance to find a way to
separate graphs. Let G1 and G2 be two graphs with V (G1) and V (G2) being the corresponding
sets of vertices, respectively. The graphs G1 and G2 will be isomorphic if there is a bijection
g : V (G1) → V (G2) such that two vertices v1, v2 ∈ V (G1) are adjacent in G1 if and only if
the vertices g (v1), g (v2) ∈ V (G2) are adjacent in G2. For example, for three vertices there
are two non-isomorphic connected graphs, 	 and �, and only one 2-connected graph, namely
�. Two isomorphic graphs are said to be of the same type.

A walk in a graph is a finite non-empty sequence W = v0e1v1 · · · ekvk , whose terms are
vertices and edges alternately. If the vertices and the edges of a walk w are distinct, w is
called a path. Two paths of a graph are called disjoint if they do not share an inner vertex.
A graph is connected if for each pair of vertices there is a path joining them. We define an
n-arc as a graph with n edges and n+1 vertices, having the following property: the edges can
be enumerated as A1, A2, . . . , An, and the vertices a0, a1, a2, . . . , an, in such a way that the
ends of Aj are aj and aj−1, for each j � n ∈ N.

The connectivity of a graph G, κ (G), is the smallest number of vertices that must be
deleted, together with the incident edges, so that the resulting graph will be disconnected or
isomorphic to the isolated vertex. A graph G is called k-connected if κ (G) � k. Note that a
1-connected graph is the same as a connected graph. Figure 1(a) illustrates the only simple
2-connected graphs of two and three vertices. By convention, the graph K2 on two vertices and
one edge is 2-connected. Figure 1(c) illustrates the three different types, up to isomorphism,
of simple 2-connected graphs with four vertices, namely , and . Each of these types
has a number of possible labelings, where by a labeling is understood a numbering of the
vertices. For example, the unlabeled graph has three different labelings, as shown in figure
1(c). But how can we distinguish different labelings of a graph? Let G1 and G2 be the two
labeled graphs with fG1 and fG2 being the corresponding relations of incidence. We say that
the graphs G1 and G2 have different labelings if they are isomorphic as unlabelled graphs but
fG1 	= fG2 as labeled graphs.

4. Results on k-connected graphs

Substantial work has been reported in the literature on k-connected graphs. A keystone result
in the theory is the following [11].

Menger’s theorem. A graph G with number of vertices n � k +1 is k-connected if and only if
any two distinct vertices of G are connected by at least k disjoint paths.

It follows directly that each vertex of a 2-connected graph is of at least degree 2.
Further, quoting Bollobás from [12]:

One of the most important goals of the theory of k-connected graphs is to compile
a list of all k-connected graphs. A natural way of achieving this would be to give
some operations producing k-connected graphs from k-connected graphs such that
every k-connected graph can be obtained from certain simple k-connected graphs by
repeated applications of the operations.

7
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Indeed, this has been accomplished by Tutte [14] for 3-connected graphs and by Slater
[13] for 4-connected graph. In the case of 4-connected graphs, Slater found rather complicated
and not too informative operations. On the other hand, Tutte proved the following result: ‘A
graph is 3-connected if and only if it is a wheel or can be obtained from a wheel by repeated
applications of the following two operations: (a) the addition of an edge, (b) the replacement
of a vertex x of degree �4 by two adjacent vertices x′, x′′ and joining every neighbor of x to
exactly one of x′, x′′ in such a way that both x′ and x′′ will have degree � 3. (This operation is
called splitting of the vertex x.)’

Moreover, it has been understood [12, 15, 16] that since the addition of an edge does not
decrease the connectivity of a graph, in order to describe all k-connected graphs, it suffices
to describe all minimally k-connected graphs, that is, graphs that are k-connected but lose
this property if we remove any of their edges. The strongest results are by Halin and Mader,
who worked on minimally k-connected graphs. The first results were obtained by Halin [17]
for example: ‘every finite k-connected graph G contains either a vertex of valency k or an
edge e such that the graph arising from G by the deletion of e remains k-connected’. Halin
also conjectured a number of extensions of those results. Subsequently, all conjectures were
proved by Mader [18, 19].

We will focus here on 2-connected graphs. Substantial work has been reported in the
literature on 2-connected graphs, see for example [2, 20, 21, 22, chapter III]. Dirac [16] and
Plummer [15] have proved the following inductive result: ‘For each i, 0 � i � k (k � 1) let
Gi be an edge xixi+1

′ or a minimally 2-connected graph containing compatible vertices xi and
xi+1

′. Let G be the graph obtained from
⋃k

0 Gi by identifying xi with xi+1
′ for 0 � i � k and

joining x0 to xi+1
′. Then G is minimally 2-connected. Conversely, every k-connected graph can

be obtained in the way described above’. As we see, they obtain all minimally 2-connectetd
graphs from minimally 2-connected graphs. Also, the operation used is amalgamation of
minimally 2-connected graphs and edges (via vertices). Another inductive result about the
construction of 2-connected graphs is by Diestel [20]: ‘A graph is 2-connected if and only if it
can be constructed from a cycle by successively adding arcs, which have their endpoints in the
already constructed graph’; for a proof see, for example, [20], p 44. Diestel uses the operation
of adding arcs, that is, connected graphs with two endpoints and all the other vertices of
degree 2.

Finally, we have the following results, which form the basis of our work.

Tutte’s theorem. Let G be a simple 2-connected graph having at least two edges. Then G
can be represented as a union of a simple 2-connected subgraph H and an arc L that avoids
H but has both its ends in H. For a proof of Tutte’s theorem see, for example, [22], p 57.

Corollary 1. Let G be a simple 2-connected graph. Then either there is a vertex in G of
degree 2 or there is an edge e such that G − e is 2-connected.

5. Inductive derivation of 2-connected graphs based on vertices

The main problem in finding all 2-connected graphs with n vertices is to separate them from
the connected graphs with n vertices. It is obvious that the set of the 2-connected graphs
with n vertices is a genuine subset of all connected graphs with n vertices. In table 2 we can
see the number of connected graphs with n vertices C (n) and the corresponding number of
2-connected graphs with n vertices S (n), for n � 19. For a full list of 2-connected graphs
with n � 7, see, for example, the appendix of [10].

We can easily see that these numbers grow exponentially with n. Therefore, it becomes
extremely difficult to extract the 2-connected graphs from the set of connected graphs. For

8
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Table 2. The number C (n) of connected graphs and the number S (n) of 2-connected graphs for
vertices n � 19.

C(n) n S(n)

1 1 0
1 2 1
2 3 1
6 4 3

21 5 10
112 6 56
853 7 468

11117 8 7123
261080 9 194066

11716571 10 9743542
1006700565 11 900969091

164059830476 12 153620333545
50335907869219 13 48432939150704

29003487462848061 14 28361824488394169
31397381142761241960 15 30995890806033380784

63969560113225176176277 16 63501635429109597504951
245871831682084026519528568 17 244852079292073376010411280

1787331725248899088890200576580 18 1783160594069429925952824734641
24636021429399867655322650759681644 19 24603887051350945867492816663958981

Source: Wolfram MathWorld (http://mathworld.wolfram.com/), The On-Line Encyclopedia of Integer
sequences (http://www.research.att.com/njas/sequences/).

that, it would be very nice if we could inductively build all 2-connected graphs with n vertices
using the 2-connected graphs with n − 1 vertices. With this aim we allow the following
operations on graphs.

Definition 1. Addition of a vertex in a graph G is the operation that adds a new vertex v of at
least degree 2 in the set V (G) and its incident edges in the set E(G). We denote this operation
as ‘G+ (v)’. Subtraction of a vertex from a graph G is the inverse operation, where we remove
a vertex v with all its incident edges. We denote this operation as ‘G − (v)’.

Definition 2. Addition of an edge in a graph G is the operation where we connect two vertices
of G by a new edge e. So, we add e in E(G). We denote this operation as ‘G + e’. The inverse
operation is called removal of an edge. We denote this operation as ‘G − e’.

Definition 3. Subdivision of an edge of a graph G is the operation where in an edge e with
ends the vertices v1 and v2 we add a new vertex v. So, we have addition of the vertex v in the
set V (G) and replacement of the edge e from the edges (v1v) and (vv2) in the set E(G). The
inverse operation is called removal of a vertex. Here, the two edges incident to a vertex v of
degree 2 are replaced by one edge and the vertex v is removed. We denote this operation as
‘G − v’.

Remark 2. It is worth noting that any two of the above operations can produce the third one.
Indeed, addition of a vertex can be seen as the combination of subdividing an edge and adding
edges. Whilst, subdivision of an edge can be seen as addition of a vertex of degree 2 combined
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with the removal of the old edge. Finally, addition of an edge can be seen as addition of vertex
of degree 2 and removal of this new vertex.

In this work we focus on the two operations that add a new vertex in an existing
graph, that is, ‘addition of a vertex’ and ‘subdivision with an edge’, because our main result
(theorem 1) is stated by means of induction on the number of vertices. Yet, the operation
‘addition of an edge’ helps in the proof of our statements.

We shall now show that the two operations that add a new vertex, applied on a 2-connected
graph, yield a 2-connected graph with one more vertex.

Proposition 1. In a simple 2-connected graph G with n − 1 vertices the subdivision of an
edge by a vertex v yields a simple 2-connected graph G′ with n vertices.

Proof. Let G′ = G + (v) and (ab) be the subdivided edges. We need to show that κ(G′) � 2,
that is, the subtraction of any vertex u ∈ V (G′) will give a connected graph. Or, equivalently,
that between any two vertices in G′ there are at least two disjoint paths connecting them. For
a pair of vertices w,w′ ∈ V (G) there are at least two disjoint paths in G connecting them,
since G is 2-connected. If one of these paths involves the edge (ab), then in G′ it will involve
instead (av) ∪ (vb). So, in G′ there are also at least two disjoint paths between w and w′.

Consider now the new vertex v paired with a vertex w. Then, what we know is that
between w and say a there are at least two disjoint paths in G′, say γ1 and γ2. If one of them
contains the vertex v, say γ1, then we can consider the paths γ2 ∪ (av) and γ1\ (av) which
are disjoint and connect the vertices v and w. Now if neither γ1 nor γ2 contains the vertex
v, then, obviously, neither contains the vertex b as well. We can also find two disjoint paths
connecting v and w. This is true because if we look at the vertices b and w in G, we see that
they connect through the path γ1 ∪ (ab) and as G is 2-connected, there is at least one more
disjoint path, say γ3, that connects them as well. Obviously, γ1 and γ3 are disjoint. So, we can
find in G′ at two disjoint paths connecting v and w, namely (va) ∪ γ1 and (vb) ∪ γ3. Thus, G′

is 2-connected. �

Proposition 2. In a simple 2-connected graph G with n − 1 vertices, the addition of a vertex
yields a simple 2-connected graph with n vertices.

Proof. Let v be a new vertex and let G′ = G + (v). We need to show that κ(G′) � 2, that is,
the subtraction of any vertex will give a connected graph. We have the following two cases.
First, suppose that the vertex v is subtracted from the graph G′. Therefore, the remaining
graph G, which is 2-connected, is connected.

Now suppose that from the graph G′one of the rest n − 1 vertices, say u, is subtracted.
Then the graph that arises is the same as the one that would arise from G if we subtract the
vertex u, but with the extra vertex v of at least degree 2. So, every pair w,w′ ∈ V (G) of
old vertices is path connected. Consider now the vertex v paired with a vertex w. Then v

is connected with at least one vertex w′ ∈ V (G) (in fact, v connects with at least two, if the
vertex u is not adjacent to v). However, w′ is path connected to w; hence, v is connected to
w. Therefore, for each pair of vertices there is at least one path that connects them. Thus, by
Menger’s theorem, G′ is connected.

Now suppose that from the graph G′ one of the rest n − 1 vertices which is adjacent to the
vertex v that we have added is subtracted. Then the resulting graph is the same as the one that
would arise from G if we had subtracted the same vertex and before the addition of the new
vertex, but with one extra vertex of at least degree 1. So, the new vertex and any other vertex
of the new graph, even if it were adjacent to the vertex that we have subtracted, is connected
with at least one more vertex. Therefore, for each pair of vertices there is at least one path that

10
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connects them. Thus, by Menger’s theorem, the graph G′-(any vertex) is connected, therefore
G′ is 2-connected. �

Note that, in the case where v is exactly of degree 2, proposition 2 follows from Tutte’s
theorem.

The question now is whether, using the above results, all 2-connected graphs with n
vertices arise from the 2-connected graphs with n − 1 vertices. Indeed we claim the following,
which is our main result.

Theorem 1. In a simple 2-connected graph of n vertices there is at least one vertex that can
be subtracted or removed so that the result will be a simple 2-connected graph with n − 1
vertices. Equivalently, every simple 2-connected graph with n vertices arises from a simple
2-connected graph with n − 1 vertices by adding a vertex or by subdividing an edge.

In [23], appendix 1, we demonstrate the application of theorem 1 for obtaining
exhaustively the full list of 2-connected graphs, with no repetitions, for n � 7.

Concerning the operation ‘removal of an edge’, we give the following result which is
known (compare with [22], p 67, theorem III.30), but for which we give a more direct proof.

Proposition 3. If from a simple 2-connected graph G we remove an edge e the remaining
graph G′ is either 2-connected or connected. Moreover, if G′ is 2-connected, then G must be
of the form

If G′ is connected, then G must be of the form

where Gi, i � n, are the 2-connected subgraphs with n � 2.

Proof. Let e ∈ E(G) and G′ = G − e. We will show that G′ is connected. Let
w,w′ ∈ V (G′) = V (G). By the fact that G is 2-connected there are at least two disjoint
paths between w and w′, and at most one of them will involve the edge e. So, for every pair

of vertices in G′ there is at least one path connecting them
Menger⇒ G′ is (at least) connected.

Obviously, if G′ is 2-connected, then G must be isomorphic to the graph

If G′ is not 2-connected, then we claim that between the vertices v1 and v2 of the edge e
there are no two disjoint paths in G′. Indeed, suppose there are two disjoint paths γ1 and γ2

connecting v1 and v2. Then we will show that for any pair of vertices w1, w2 there are two
disjoint paths in G′, which is a contradiction.

Note first that if between w1 and w2 there are two disjoint paths not involving the edge e,
there is nothing to show. Suppose now that between w1 and w2 there are exactly two disjoint
paths δ1 and δ2, one of them, say δ1, containing the edge e. Then δ1 also contains the vertices
v1, v2. If the path δ2 involves parts only of, say, γ2, then in δ1 we substitute e by γ1 and we are
done. If now δ2 involves parts of both γ1 and γ2, we do the following.

11
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(a) (b)

Figure 2. Illustration of the paths used in the proof of proposition 2.

Let a and b be the first and the last intersection of δ2, respectively, with γ1 ∪ γ2. We
distinguish two cases.

If a, b both belong to, say, γ2 we define new paths ζ1 and ζ2 between w1 and w2 as
follows (view figure 2(a)):

ζ1 ≡ (part (w1, v1) ∈ δ1) ∪ γ1 ∪ (part (v2, w2) ∈ δ1)

ζ2 ≡ (part (w1, a) ∈ δ2) ∪ ((a, b) ∈ γ2) ∪ (part (b,w2) ∈ δ2).

The paths ζ1 and ζ2 are obviously disjoint.
Finally, if a belongs to, say, γ2 and b belongs to γ1, then we define new paths ζ1 and ζ2

between w1 and w2 as follows (view figure 2(b)):

ζ1 ≡ (part (w1, v1) ∈ δ1) ∪ (part (v1, b) ∈ γ1) ∪ (part (b,w2) ∈ δ2)

ζ2 ≡ (part (w1, a) ∈ δ2) ∪ (part (a, v2) ∈ γ2) ∪ (part (v2, w2) ∈ δ1) .

The paths ζ1 and ζ2 are obviously disjoint.
We showed that in any case G′ is 2-connected, which is a contradiction. Therefore, G

must be of the form

where Gi, i � n, are the 2-connected subgraphs with n � 2. �

Note that, the first case of proposition 3 is a special case of Tutte’s theorem (where the
arc L is only one edge).

We shall finally give two results, on which will rest the proof of theorem 1.

Proposition 4. Let G be a simple 2-connected graph. If there is in G a vertex v of degree 2,
then either v can be removed and G − v is 2-connected or v can be subtracted and G − (v)

is 2-connected.

Proof. Let a, b be the adjacent vertices of v. There are two cases for the position of the vertex
v. Indeed, suppose that only a is of degree 2. Then the subtraction of the vertex b would give a
non-connected graph, which is a contradiction, since G is 2-connected (see figure 3(b)).

Case 1. The vertices a and b are connected with an edge (see figure 3(a)). If the vertices a
and b are of degree 2, then G is the triangle vab and the statement holds. If the degrees of
the vertices a and b are greater than 2, then there are vertices c and d, adjacent to the vertices
a and b, where generally c 	= d (see figure 3(c)). We will show that, in this case, the graph

12
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(a) (b) (c)

Figure 3. The graphs used in the proof of proposition 4.

G − (v) is 2-connected. By Menger’s theorem we can equivalently show that between any
two vertices of the graph there are at least two disjoint paths.

Let us consider what happens in G after the subtraction of the vertex v. Take first the
vertices a and b. Between the vertices a and b there is one path, the edge (ab). We must
reassure that there is one more path that connects them and which is disjoint from the edge
(ab). To find this path we look at the vertices c and d. Between them there is the path (cabd) in
G and, according to Menger’s theorem, there is one more path γ in G disjoint from (cabd) that
connects the vertices c and d. Clearly γ is in G − (v). Hence, we have the two disjoint paths
(ab) and ((ac) ∪ γ ∪ (db)) in G − (v) between a and b. Now take two vertices v1 and v2 in
G − (v), such that it is not the case v1 = a, v2 = b. Since G is 2-connected, there are two
disjoint paths between v1 and v2 in G. If one of the two paths contains the vertex v, then it must
contain the edges (av) and (vb). So, the other part cannot contain the edge (ab). Therefore,
we can replace in the first path the edges (av) and (vb) by (ab), obtaining two disjoint paths in
G − (v). Hence, G − (v) is 2-connected.

Case 2. The vertices a and b are not connected with an edge. Obviously, the removal of the
vertex v does not affect the validity of Menger’s theorem in the graph G−v since in each path
that contains the edges (av) and (vb), they are just replaced by the new edge (ab). Therefore,
in this case also G − v is 2-connected. �

Proposition 5. Let G be a simple 2-connected graph with no vertex of degree 2. Then there is
a vertex v in G such that G − (v) is 2-connected.

Proof. We will show this by induction on the number of edges. Since we are dealing with
simple graphs, the only graph with no vertex of degree 2 that has the least number of edges is
K4, which has six edges:

As we can see, in K4, the subtraction of any vertex gives K3, which is a 2-connected
graph

.

Now, let n ∈ N, n > 6, and suppose that the statement holds for 2-connected graphs with
number of edges E < n. We will show that the statement holds for 2-connected graphs with
E = n. Let G be a 2-connected graph with E(G) = n such that every vertex of G is of at

13
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least degree 3. Then, from corollary 1, there is an edge e = (ab) in G such that G − e is
2-connected. We have E(G − e) = n − 1, and there are two cases for the graph G − e.

Case 1. The graph G − e has no vertex of degree 2. Then, by the induction hypothesis, there
is a vertex v in G − e, such that (G − e) − (v) is 2-connected. If v 	= a or b, then G − (v)

is obviously also 2-connected. If v = a or b, then (G − e) − (v) = G − (v), so G − (v)

2-connected.

Case 2. The graph G − e has at least one vertex v of degree 2 (v must be a or b). Then
proposition 4 reassures that v can either be removed and G − e − v is 2-connected or v can be
subtracted and G − e − (v) is 2-connected. Therefore, in either case G − (v) is 2-connected.�

We proceed now with the proof of theorem 1.

Proof of theorem 1. Let G be a simple 2-connected graph with n vertices. Suppose first that
there is a vertex v in G of degree exactly 2. Then, by proposition 4, v can either be removed
and G − v is 2-connected, or v can be subtracted and G − (v) is 2-connected. Now suppose
that all vertices in G are of degree greater than 2. Then, by proposition 5, there is a vertex v

that can be subtracted, such that G− (v) is 2-connected. Therefore, every simple 2-connected
graph with n vertices arises from a simple 2-connected graph with (n − 1) vertices, by means
of either the addition of a new vertex or the subdivision of an edge. �

Remark 3. Theorem 1 guarantees that, using the two operations, addition of a vertex and
subdivision of an edge, we obtain the full list of 2-connected graphs with n vertices from those
with n−1 vertices. But in this list there may be repetitions, that is, pairs of isomorphic graphs.
An example is illustrated in figure 4. In order to give the full list of 2-connected graphs with
no repetitions one has to detect the graphs that are isomorphic and choose a representative
for each isomorphism class. This is easy to do by hand for n up to 6, see table 3. We have
also done it by hand for n = 7, see [23]. For n > 7 one can use invariants of graphs, such
as the chromatic polynomial, the Tutte polynomial, etc, see for example [22], chapter IX. Of
course, there are algorithms and programs analyzing isomorphisms of graphs. For example,
the package NAUTY [24]. None of them, however, has a polynomial complexity. It is an
open (and important) problem whether the graph isomorphism problem has a polynomial
complexity algorithm, see, for example, [2, 25, 26]. This problem is particularly attractive
and actively researched by people working on quantum computing: is there a polynomial
complexity, quantum algorithm for the graph isomorphism problem?

Figure 4. Two non-isomorphic 2-connected graphs on six vertices give rise to the same 2-connected
graph on seven vertices.
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Table 3. Derivation of 2-connected graphs with n = 3,4,5,6 vertices from the 2-connected graphs
with n = 3,4,5,6 vertices. Note that the name of each graph is of the form nk where n is the number
of vertices and k is the number in the ordered list in the appendix of [10].
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Table 3. (Continued.)
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We believe that our inductive results can be generalized to k-connected graphs, with proper
adaptation of the operations.

6. Conclusions

• In the present work we have considered only simple graphs. This is because we wanted
to preserve the equivalence between graphs and clusters of particles. Indeed, as we have
already stated, vertices have a natural representation as particles, whereas edges represent
the existence of interaction between two particles. To say that two particles interact
twice makes no sense; therefore, we cannot allow more than at most one edge per pair of
vertices.

• In order to maintain the naturality of the correspondence between particles and vertices,
we allowed operations on graphs that correspond to changes in the state of the clusters.
More precisely, the addition of a vertex can be seen as a new particle coming close
enough to the cluster in order to interact with at least two existing particles in the cluster.
Moreover, subdividing an edge means that a particle comes close enough to two other
particles in the cluster and starts interacting with them, pushing them at the same time
away, so that they loose their interaction. Finally, the addition of an edge means that
two particles in the cluster come close enough so that they start to interact. Analogous
situations can be considered for the inverse operations.

• According to our results, one can obtain the whole list of simple 2-connected graphs
inductively with induction on the number of vertices and with induction step equal to 1,
using only the operations in theorem 1. We extracted our proofs from known theorems in
graph theory, which nevertheless are very complicated, they are much more general and
they require an extensive knowledge on graphs. For the extent needed in this paper we
give much simpler straightforward proofs.

• In the obtained list of simple 2-connected graphs there will be repetitions. To eliminate
them, one must detect all isomorphic graphs and then choose one representative for each
isomorphism class (see remark 3). The different 2-connected graphs of up to n vertices are
the summands of S′ that appear in equations (11a) and (11b) of the virial coefficients Bn.
Further, in order to find their coefficients in the combinatorial expression of each S′ (recall
equation (12)) one has to find the number of all different labelings for each 2-connected
graph (see remark 1). Then, according to the type of the potential between the particles,
one needs to calculate the value of the integral of S′ over all the possible positions of the
particles. But this is just an operational issue and there are routine algorithms that can do
this.
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Appendix

In this appendix we give an alternative proof of theorem 1 after slightly extending its statement.
We begin with some definitions that will be needed in what follows.
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Figure A1. An infinite family of 2-connected graphs with all vertices inessential and four vertices
of degree 2.

Let H be a subgraph of a graph G. We say that H is an edge-proper subgraph of G if
E(G) − E(H) is non-empty. Similarly, we say that H is a vertex-proper subgraph of G if
V (G) − V (H) is non-empty. From the finiteness of G we have the following.

Lemma 1. Let G be a 2-connected graph.

(1) If H is a 2-connected vertex-proper subgraph of G, then there is a maximal 2-connected
vertex-proper subgraph of G (denoted by Hv−max) containing H.

(2) If H is a 2-connected edge-proper subgraph of G, then there is a maximal 2-connected
edge-proper subgraph of G (denoted by He−max) containing H.

We will also use the following elementary lemma.

Lemma 2. Let H be a vertex-proper subgraph of a 2-connected graph G. Also assume that H
has at least two vertices. Then there is a vertex v in V (G) − V (H) and two disjoint paths γ1

and γ2 connecting v to H. ‘Disjoint’ means that γ1 ∩ γ2 = {v} and ‘connecting to H’ means
that γi ∩ H, i = 1, 2, is one vertex.

Lemma 2 is a special case of Menger’s theorem, but for completeness we give a short
proof.

Proof. Let v′ be a vertex in V (G) − V (H) and connect it to a vertex v1 of H by a path γ ′
1

such that γ ′
1 ∩ H = {v1}. As G is 2-connected, thus G − v1 is connected. Let v2 be a vertex

of G − (v1) connected to v′ in G − (v1) by a path γ ′
2 such that γ ′

2 ∩ H = {v2}. The paths γ ′
1

and γ ′
2 are not necessarily disjoint but γ ′

1 ∩ γ ′
2 ⊂ G − H . Let v be the last vertex of γ ′

1, while
traveling from v′, which also belongs to γ ′

2. Obviously v ∈ V (G − H). Let γi , i = 1, 2, also
be the part of γ ′

i connecting v to vi . By construction, γ1 ∩ γ2 = {v} and lemma 2 is proven.
�

We are now ready to give another proof of theorem 1. In fact we will give a small
generalization of it for n � 4 as follows.

Theorem 2 (Generalization of theorem 1). Let G be a simple 2-connected graph of at least
four vertices. Then either there exists a vertex v such that G − (v) is 2-connected or G has at
least four vertices of degree 2.

Proof of theorem 2. Assume that G contains no vertex such that G− (v) is 2-connected. G is
not a tree, so let Ck, k � 3, be the shortest cycle in G. If G = Ck , then k � 4 and the theorem
is proven. Otherwise, by lemma 1 there is a maximal 2-connected vertex-proper subgraph
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Cv−max
k of G. By lemma 2 there is a vertex v in G − Cv−max

k connected to Cv−max
k by two

disjoint paths γ1 and γ2. The graph Cv−max
k ∪ γ1 ∪ γ2 is 2-connected; thus, by the maximality

of Cv−max
k it contains all vertices of G. Furthermore, every vertex of (γ1 ∪ γ2) − Cv−max

k is of
degree 2. If there were only one such vertex, say v, then G − (v) = Cv−max

k is 2-connected,
which is a contradiction. Thus, γ1 ∪ γ2 contains at least two vertices of degree 2. Our goal,
now, is to show that if for every vertex v the graph G − (v)is not 2-connected, then G has at
least four vertices of degree 2. To show this we start from the first part of the proof and we
consider a path γ3 in Cv−max

k that connects the endpoints of γ1 ∪ γ2. We then have the cycle
Cs = γ1 ∪ γ2 ∪ γ3, with s � 4. As G is not a cycle, we can repeat the previous consideration
starting from Cs and produce two new vertices of degree 2 outside Cs . This completes our
proof of theorem 2. To see that theorem 2 is a generalization of theorem 1 consider a simple
2-connected graph with no vertex v such that G − (v) is 2-connected. Therefore, as we have
shown above, the path γ1 ∪ γ2 contains at least two vertices of degree 2, so by proposition 4
one of these vertices can be removed, and we obtain a simple 2-connected graph with one less
vertex. �

Remark 4. Our generalization of theorem 1 is the best possible in the sense that there are 2-
connected graphs with G−(v) not 2-connected for any vertex v, with arbitrarily many vertices
and only four vertices of degree 2. See figure A1, where an infinite family of 2-connected
graphs is illustrated, with all vertices inessential and four vertices of degree 2. Inessential
vertex means that its deletion results in a graph which is not 2-connected.
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